Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes.

نویسندگان

  • Lyudmila M Mikhaylova
  • Kimberly Nguyen
  • Dmitry I Nurminsky
چکیده

Gene duplications have been broadly implicated in the generation of testis-specific genes. To perform a comprehensive analysis of paralogous testis-biased genes, we characterized the testes transcriptome of Drosophila melanogaster by comparing gene expression in testes vs. ovaries, heads, and gonadectomized males. A number of the identified 399 testis-biased genes code for the known components of mature sperm. Among the detected 69 genes downregulated in testes, a large fraction is required for viability. By analyzing paralogs of testis-biased genes, we identified "co-regulated" paralogous pairs in which both genes are testis biased, "anti-regulated" pairs in which one paralog is testis biased and the other downregulated in testes, and "neutral" pairs in which one paralog is testis biased and the other constitutively expressed. The numbers of identified co-regulated and anti-regulated pairs were higher than expected by chance. Testis-biased genes included in these pairs show decreased frequency of lethal mutations, suggesting their specific role in male reproduction. These genes also show exceptionally high interspecific variability of expression in comparison between D. melanogaster and the closely related D. simulans. Further, interspecific changes in testis bias of expression are generally correlated within the co-regulated pairs and are anti-correlated within the anti-regulated pairs, suggesting coordinated regulation within both types of paralogous gene pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Identification and Properties of 1,119 Candidate LincRNA Loci in the Drosophila melanogaster Genome

The functional repertoire of long intergenic noncoding RNA (lincRNA) molecules has begun to be elucidated in mammals. Determining the biological relevance and potential gene regulatory mechanisms of these enigmatic molecules would be expedited in a more tractable model organism, such as Drosophila melanogaster. To this end, we defined a set of 1,119 putative lincRNA genes in D. melanogaster usi...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Extensive Differences in Antifungal Immune Response in Two Drosophila Species Revealed by Comparative Transcriptome Analysis

The innate immune system of Drosophila is activated by ingestion of microorganisms. D. melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds on slime flux and decaying bark of tree housing a variety of bacteria, yeasts, and molds. In this study, it is shown that D. virilis has a higher resistance to oral infection of a species of filamentous fungi belong...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 179 1  شماره 

صفحات  -

تاریخ انتشار 2008